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Abstract. We consider the dispersionless limit of the discrete KP hierarchy. We describe a
family of N -parameter ‘waterbag’ reductions of the hierarchy and give sufficient conditions for the
reduced equations of motion to be hyperbolic. Using Geogdzhaev’s method, we solve the initial
value problem for the reduced system. The solution is implicit, in generalized hodograph form
(Tsarev S P 1985 Sov. Math.–Dokl. 31 488). The relationship of this form of the solution to the
properties of the hierarchy, the reduction and the initial data is discussed briefly, indicating how
this construction might be generalized.

1. Introduction

In recent years, numerous investigations have been made into integrable systems and
their generalizations. One of the most studied is the discrete KP, or generalized Toda
equations [2, 3, 12, 13]. This hierarchy [2, 3, 12] has the representation

∂L

∂tn
+ [Dn,L] = 0 n = 1, 2, . . . (1)

where L and Dn are difference operators defined by

L = 	 + b0 + b1	
−1 + b2	

−2 + · · ·
	 = exp

(
∂

∂m

)
Dn =

(
Ln

n

)
+

.
(2)

Here, 	 is the unit shift operator such that 	g(m, t) = g(m+ 1, t), g : Z×R → R, while ( )+

denotes the polynomial part in 	. The discrete KP equations are the consistency conditions
for the following spectral equations:

Lϕ = λϕ
∂ϕ

∂tn
= Dnϕ. (3)

This system is Hamiltonian and integrable. It also admits many different reductions. The
usual Toda system is a good example of this [14, 15]; it is the t1 flow in (1) with the restriction,
invariant under the dynamics, that bi = 0 for i � 2. There are many other types of reduction
of the hierarchy (2), for instance with L = 	 +Q(1 −	−1)−1R, where Q and R are row and
column vectors. If Q,R are scalars, this is equivalent to the relativistic Toda chain [8]. In this
paper we consider a particular limit of (1), the dispersionless limit or long-wave continuum
limit, and a family of reductions of it. The outline of this paper is as follows. In section 2, we
will discuss some properties of the dispersionless discrete KP hierarchy (d	KP), and then its
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8128 Lei Yu

relation with an analogous system, the Benney hierarchy. In section 3, a family of reductions
of this system is investigated in detail. Its initial value problem and solutions will be discussed
in section 4.

2. The dispersionless discrete KP hierarchy

In order to obtain the d	KP hierarchy, we take the formal semiclassical limit of (1). Under
this limit, ∂

∂m
is replaced by p and the commutator is replaced by the Poisson bracket with

respect to p and x. Thus, the spectral problem becomes

λ = ep +
∞∑
k=0

Bke
−kp. (4)

The hierarchy (1) takes the form

∂λ

∂tn
+ {Hn, λ}p,x = 0 Hn =

(
λn

n

)
+

(5)

where { }p,x denotes the Poisson bracket with respect to p and x, and ( )+ denotes the part
polynomial in ep.

We can see that these continuum limits are always systems of hydrodynamic type, that is,
systems of the form (vi)t = M

j

i (vj )x , where the M
j

i are functions of v. Such systems with
two dependent variables were solved by Riemann [17] using the hodograph transformation.
Tsarev [16] showed how this result could be generalized to finitely many, N say, dependent
variables; if a system of hydrodynamic type is Hamiltonian and is diagonalizable, it can be
written as

∂λi

∂tn
+ µi

∂λi

∂x
= 0 i = 1, . . . , N. (6)

With these N Riemann invariants λi , and corresponding characteristic speeds µi , then it has
a solution in the form

x − µitn = wi i = 1, . . . , N. (7)

The wi are the characteristic speeds of any commuting flow of (6). These wi satisfy a system
of N(N − 1) overdetermined linear equations

∂iwk

wi − wk

= �k
ki = ∂ivk

vi − vk
∂i = ∂

∂λi
i 	= k. (8)

Here the �k
ki are the Christoffel symbols of the Riemannian metric associated with the

Hamiltonian structure of (6). Provided that the system (6) is hyperbolic, so the speeds µi

are real and distinct, and that it is not linearly degenerate (that is, ∂µi/∂λi 	= 0, i = 1, . . . , N),
then the solutions of (7) will satisfy (6), which is parametrized by the solutions of (8). These
depend on N functions of one variable.

In this paper, we will look at a special reduction of the d	KP hierarchy (5); by using the
method introduced in [5] and the ideas in [9], we transform the reduced system to a diagonal
system of hydrodynamic type, and then, by constructing a canonical transformation, find the
solution of the initial value problem in the generalized hodograph form.

The dispersionless hierarchy (5) can be represented as a family of Vlasov equations
∂f

∂tn
+ {Hn, f } = 0 f = f (x, p, t) t = (t1, t2, t3, . . .). (9)

Here the moments Bn are defined by

Bn(x, t) =
∫ ∞

−∞
enp

′
f (x, p′, t) dp′.
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It is simple to verify that the two constructions, (5) and (9), give the same system of partial
differential equations for the moments Bn, for example,

∂Bn

∂t1
+
∂Bn+1

∂x
+ nBn

∂B0

∂x
= 0 n = 0, 1, 2, . . . . (10)

These can be lifted to the simplest of (9)

∂f

∂t1
+ ep

∂f

∂x
− ∂B0

∂x

∂f

∂p
= 0. (11)

We now consider (4) as an asymptotic series, valid as p → +∞, of an analytic function, which
we will also call λ(p)

λ(p) = ep +
∫ ∞

−∞

epf (x, p′, t)
ep − ep′ dp′. (12)

This function is analytic in the strips

Jk = {p|Im (p) ∈ (2kπ, (2k + 2)π), k ∈ Z}.
As λ(p) is clearly periodic with period 2π i, we need to consider only the lower half of

J0 : {p ∈ C|0 < Im (p) � π} and the upper half of J−1 : {p ∈ C| − π � Im (p) < 0}. We
denote the restriction of λ to these two regions by λ+ and λ− respectively. The discontinuity
across Im p = 0 is given by λ+ − λ− = −2π if . Following [9, 10], with small modification
of the contour, we obtain the boundary value of λ+ as p approaches the real axis from above

λ+(p) = ep +
∫
$

epf (x, p′, t)
ep − ep′ dp′

= ep + P

∫
epf (x, p′, t)

ep − ep′ dp′ − iπf (13)

where $ is an indented contour passing below the point p and P
∫

denotes the Cauchy
principal value of the integral. We require that f should satisfy a Hölder condition, and that it
tends to zero as |p| → ∞ sufficiently rapidly. A straightforward calculation shows that if f
satisfies (11) then λ+(p) satisfies

∂λ+

∂t1
+ ep

∂λ+

∂x
= ∂λ+

∂p

{
∂p

∂t1
+ ep

∂p

∂x
+
∂B0

∂x

}
.

It follows that the equation for the inverse function p(λ+, x, t) at constant λ+ is

∂p

∂t1
+

∂

∂x
(ep + B0) = 0

while, at constant p, we have

∂λ+

∂t1
+ ep

∂λ+

∂x
− ∂B0

∂x

∂λ+

∂p
= 0. (14)

This is of course the t1 flow in (5)†.

2.1. The Benney hierarchy

The Benney hierarchy [1] is constructed in a very similar way; its equations of motion can be
obtained through

∂$

∂Tn
+

{(
$n

n

)
+

,$

}
P,X

= 0 (15)

† We will use λ to denote λ+ hereafter.
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but with the generating function defined by

$(P ) = P +
∞∑
i=0

AiP
−(i+1).

The symbol ( )+ now denotes the polynomial part in P . A Vlasov equation [6], analogous
to (11),
∂f ′

∂T2
+ P

∂f ′

∂X
− ∂A0

∂X

∂f ′

∂P
= 0 f ′ = f ′(X, P,T ) T = (T1, T2, T3, . . .) (16)

gives rise to the moment equations
∂An

∂T2
+
∂An+1

∂X
+ nAn−1

∂A0

∂X
= 0 n = 0, 1, 2, . . .

where we have defined the moments to be An = ∫∞
−∞ Pnf ′ dP . The two systems are related

due to the following theorem [11].

Theorem 2.1. By setting ep + B0 = P, t1 = X, t2 = −T2 in the t1 and t2 flows of the d	KP
hierarchy

∂f

∂t1
+ ep

∂f

∂x
− ∂B0

∂x

∂f

∂p
= 0

∂f

∂t2
+ (e2p + B0ep)

∂f

∂x
−
(

ep
∂B0

∂x
+
∂B1

∂x
+ B0

∂B0

∂x

)
∂f

∂p
= 0

(17)

eliminating the x-derivatives and setting f (x, p, t) = f ′(X, P,T ), f ′ will satisfy (16).

Proof. We see that

A0 =
∫

f ′ dP =
∫

f ′ dP
dp

dp =
∫

f ep dp = B1.

By eliminating the x-derivative from equations (17), we have

∂f

∂t2
+ (ep + B0)

(
− ∂f

∂t1
+
∂B0

∂x

∂f

∂p

)
−
(

ep
∂B0

∂x
+
∂B1

∂x
+ B0

∂B0

∂x

)
∂f

∂p
= 0.

Substituting ep + B0 = P in the above, we have a simpler equation
∂f

∂t2
− P

∂f

∂t1
− ∂B1

∂x

∂f

∂p
= 0. (18)

Now, using the fact that

∂f

∂t2

∣∣∣∣
p

= − ∂f ′

∂T2

∣∣∣∣
P

+
∂f ′

∂P

∂B0

∂t2

∂f

∂t1

∣∣∣∣
p

= ∂f ′

∂X

∣∣∣∣
P

+
∂f ′

∂P

∂B0

∂t1

∂f

∂p

∣∣∣∣
t2,t1

= ∂f ′

∂P

∣∣∣∣
T ,X

(P − B0)

and eliminating x-derivatives of the moments Bi by using the moment equations
∂B0

∂t1
+
∂B1

∂x
= 0

∂B1

∂t1
+
∂B2

∂x
+ B1

∂B0

∂x
= 0

∂B0

∂t2
+
∂B2

∂x
+ B0

∂B1

∂x
+ B1

∂B0

∂x
= 0
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in the equation (18), the result follows. �
Reductions of the hierarchy (5) can be classified in the same way as reductions of

hierarchy (15) [9]. The reduction will again correspond to a univalent conformal mapping of a
fixed domain, such as the half-plane, into a domain withN slits, and the Riemann invariants are
the end points of the slits. These reduced systems are all semi-Hamiltonian, so can be solved
by the hodograph transformation. In fact it is possible to use the approach of Geogdzhaev to
solve them explicitly; we aim to illustrate this by looking at one important example of this in
detail.

3. The ‘waterbag’ reduction

One important reduction is the so-called ‘waterbag’ model; this reduction is valid for any
Vlasov equation. In the simplest case, the distribution function is taken to be piecewise
constant on same region of phase space. The region is advected along the characteristics of the
Vlasov equation, which are the solutions of Hamilton’s equations. The area of the region is
thus constant, and the region moves like a bag full of incompressible fluid; hence the name. It
is of course sufficient to follow the boundary of the region, as the distribution remains constant
inside it. Thus, we set, for k = 1, . . . , N ,

f =
{
Fk p ∈ (pk(x, t), pk+1(x, t))

0 elsewhere

where pk ∈ R,∀x, t with pi < pj for distinct i < j ; and Fk are constants. On substituting
this ansatz into (11), we see that f satisfies (11) if pk satisfies

∂pj

∂t
+ epj

∂pj

∂x
+

N∑
k=1

Fk

∂

∂x
(p(k+1,k)) = 0 p(k+1,k) = pk+1 − pk. (19)

Note the moments

B0 =
N∑
k=1

Fkp(k+1,k)

and

Bm =
N∑
k=1

1

m
Fk(e

mpk+1 − empk )

for m ∈ N,m 	= 0 here. The generating function is of the form

λ(p) = ep +
N∑
k=1

Fk

∫
$̃k

ep

ep − ep′ dp′

where $̃k, k = 1, . . . , N are the segments of real axis with an indentation below the point p.
This, after integration, is

λ(p) = ep +
N∑
k=1

F(k,k−1) ln(e−p − e−pk ) − FN ln(e−p − e−pN+1)

F0 = 0 F(k,k−1) = Fk − Fk−1.

(20)

Its branch cuts are taken along the real intervals

[p2i−1, p2i] ∪ [pN+1,∞) i = 1, . . . , N/2 N even

[p2i−1, p2i] i = 1, . . . , (N + 1)/2 N odd.
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F1
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F F
N

m

Fn

2 3

m+1

1 2 m m+1 N N+1P P P P P P

P

F

Figure 1. Sketch graph of f .

λ has asymptotics (4) as p → +∞. In addition, λ(p) is periodic of period 2π i. To reduce the
system to Riemann invariant form, we look at

∂λ

∂tn
+
∂Hn

∂p

∂λ

∂x
− ∂Hn

∂x

∂λ

∂p
= 0.

We see that at any point (p̂i , λ̂i), where ∂λ
∂p

|p=p̂i
= 0, the equation can be written as

∂λ(p̂i)

∂tn
+ µn(p̂i)

∂λ(p̂i)

∂x
= 0 µn(p) = ∂Hn

∂p
. (21)

Provided that the number of parameters on which λ(p) depends is the same as the number of
these Riemann invariants, this may then be solved by the hodograph transformation [16, 17].
The characteristic speeds of this system are µn(p̂i) and Riemann invariants λ(p̂i). We call the
p̂i the characteristic momenta.

Here, in the case of the waterbag reduction, for ∂λ
∂p

to have N + 1 distinct real roots p̂i , we
assume that all Fi � 0 for i = 0, . . . , N − 2 and for the first m of 0 < m < n < N , Fk are
increasing and then decreasing for k ∈ [n,N ] as in figure 1. The Riemann invariants λ̂i are
the values of λ at the points p̂i .

4. The initial value problem

In the previous section, it has been shown that the equations can be reduced to a diagonal system
of hydrodynamic type, by considering the points p = p̂i where ∂λ

∂p
|p=p̂i

= 0. For this system
to be hyperbolic, the characteristic speeds must be real and distinct. Since the characteristic
speeds are polynomials in ep̂i and moments Bk , and as the Bk are real, it sufficient to impose
the condition that ep̂i must be real for all i.

Consider the map λ(p, x), defined by

λ(p, x) = ep +
N∑
i=1

F(k,k−1) ln(e−p − e−pk ) − FN ln(e−p − e−pN+1).

It is periodic of period 2π i and analytic in a region Jk of the p-plane, bounded by the straight
lines Im (p) = 2kπ and Im (p) = (2k + 2)π , for k ∈ Z. Each Jk is mapped conformally to
a copy of the λ-plane Mk . This map is not univalent though. However, it is univalent in the
strip on J0

�p = {p ∈ C|0 < Im (p) � π}.
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P P P P PP P P321

λ
λ e~ P

P

m m+1 N-1 N N+1

Figure 2. Graph of Re (λ(p)).

We know that λ(p) has branch cuts along the segment of the real axis and that for Fi � 0, i =
1, . . . , N the graph of Re (λ(p)) is as in figure 2, while for i = 1, . . . , N ,

Im (λ) =
{

−πFi p ∈ [pi(x, t), pi+1(x, t)]

0 elsewhere.

We conclude that the image of �p is

�λ =
{
λ ∈ C|Im (λ) � −π

N∑
k=1

Fk

}
⊂ M0.

An example of this is illustrated in figure 3. The image of the strip Im (p) ∈ [π, 2π) is
the mirror image of this, by periodicity and the Schwarz reflection principle—the two image
regions are joined along B′C′.

Lemma 4.1. λ(p), defined by (20), maps the strip �p univalently and conformally to �λ.
Thus, for fixed x, an inverse function p(λ) is well defined in the region �λ = {λ ∈ C|Im (λ) �
−π

∑N
k=1 Fk}. This inverse mapping is discontinuous along the union of horizontal slits

* = (∪m
i=1(−∞, λ̂i])

⋃
(∪N+1

j=m+1[λ̂j ,+∞)), but analytic throughout domain D = �λ − *.

We seek a transformation from the canonical variables (x, p) to new canonical variables
(η, λ), such that the new momentum λ is constant on the characteristics. A generating function
S for such a transformation, defined by

S(x, λ) =
∫ x

x0

p(x ′, λ, t) dx ′ x0 ∈ R (22)

was constructed [4]. We suppose that p(x, λ, t) tends, as x → x0, to some x-independent
asymptotic value p0(λ) = p(x0, λ, t). The transformation is then defined implicitly by

p(x, λ) = ∂S

∂x
(23)

η(x, λ) = ∂S

∂λ
(24)
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Figure 3. Example of p plane and contour � for the case (2, 2).

while the new Hamiltonian is given by

Kn(η, λ) = Hn(x, p) +
∂S

∂t
. (25)

The formula (22) is clearly just the x-integral of (23); further, since
∂p

∂tn
+

∂

∂x
Hn(p, x) = 0

we obtain Kn(η, λ) = Hn(p0(λ)) = Hn(p0(λ(x, p))); the new coordinate η conjugate to λ is
given by (24)

η = ∂S

∂λ
=
∫ x

x0

∂p

∂λ
dx ′.

With the choice of boundary conditions above, Kn(η, λ) will be independent of η, that is,
Kn(η, λ) = K(λ). The canonical equations are generated by K(λ) in the usual way†

dλ

dtn
= −∂K(λ)

∂η
= 0

dη

dtn
= ∂K(λ)

∂λ
= constant.

† For brevity, the time dependence of all functions will be omitted hereafter.
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As a result of the construction, p(x, λ) has N + 1 branch points λ̂k , and the branch cuts
are taken from −∞ to λ̂i and from λ̂j to +∞, where i = 1, . . . , m, j = m + 1, . . . , N + 1.
Since p(x, λ) is a function of x, tn as well as λ, the Riemann invariants are also functions of x
and tn. We now suppose that λ̂i(x) are strictly monotonically increasing functions of x, while
λ̂j (x) are strictly monotonically decreasing functions of x, that is, we require

∂λ̂i

∂x
> 0 and

∂λ̂j

∂x
< 0 (26)

respectively. Now, p(x, λ) is analytic everywhere inside the domain �λ. On the boundary
�, it is analytic on γc, and real on γi, i = 1, . . . , N + 1 and γF . On the cuts γ̂k , it is either
analytic for all x or there exists some unique value x∗(λ), such that λ̂k(x∗(λ)) = λ. Then for
x > x∗(λ), p(x, λ) is real on γ̂i , i 	= 1 and on γ̂1 for x > x∗(λ) with λ > 0. At the branch
points λ̂k , if ∂2λ

∂p2 |p=p̂k
	= 0, p(x, λ) has the behaviour

p = p̂k + O((λ − λ̂k)
1
2 ) (27)

since, at the turning points p̂k , Taylor’s expansion gives

λ = λ̂k +
1

2

∂2λ

∂p2

∣∣∣∣
p=p̂k

(p − p̂k)
2 + O((p − p̂k)

3).

Lemma 4.2. If the Riemann invariants λ̂i satisfy the monotonicity conditions above
(equation (26)), then the region of analyticity of p(x, λ), D = D(x) as in lemma 4.1, satisfies
D(x1) ⊂ D(x2) for x1 > x2.

Corollary 4.1. The region of analyticity of S(x, λ) is⋂
x0�x ′�x

D(x ′) = D(x).

Now on γ̂i , i 	= 1, for x > x∗(λ), p(x, λ) is real, and for x > x∗(λ), with λ > 0 on γ̂1,
the imaginary part of S(x, λ) is then given by

Im (S) =
∫ x∗(λ)

x0

Im (p(x ′, λ)) dx ′.

Integrating (27) with respect to x, at the branch points λ̂k , and using ∂λ̂k
∂x

	= 0, an expansion of
S has the form

S = Sk + O((λ − λ̂k)
3
2 ). (28)

Now as |λ| → ∞, p has asymptotics ln λ+O( 1
λ
), and so S ∼ (x−x0) ln λ+O( 1

λ
) as |λ| → ∞.

Following [7], we define functions 0(x, λ),1(x, λ) by

0(x, λ) = S(x, λ) − K(λ)tn (29)

1(x, λ) = 0(x, λ) + Hn(x, p)tn − (x − x0)p(x, λ). (30)

Since as |λ| → ∞, 0 ∼ (x−x0) ln λ−K(λ)tn + O( 1
λ
), it follows that 1 ∼ O( 1

λ
) as |λ| → ∞.

Now Im (0) is independent of time on the cuts, because

∂0

∂tn
= ∂S

∂tn
− K(λ)

= −Hn(x, p).

For x > x∗(λ), p(x, λ) is real on the cuts; Hn(x, p) is real if p is, so we have ∂Im (0(x,λ))

∂tn
= 0.

We also see that Im (1(x, λ)) = Im (0(x, λ)) on the cut. Further, on the cuts γ̂k for
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x > x∗(λ), 1(x, λ) is real; we know that on γ̂i , i 	= 1, for x > x∗(λ), p(x, λ) is real and so is
1(x, λ). Now consider the cut (−∞, λ̂1] for λ < 0 at tn = 0, we see that Im (1(x, λ))|γ̂1 =
Im (0(x, λ)) − (x − x0)Im p(x, λ). This is zero since Im (0(x, λ))|γ̂1 = π(x − x0) and
Im (p)|γ̂1 = π for λ ∈ (−∞, 0].

Theorem 4.1. The solution of the reduced equations of motion

∂λ(p̂k)

∂tn
+ µn(p̂k)

∂λ(p̂k)

∂x
= 0 k = 1, . . . , N + 1 (31)

can be expressed in terms of the hodograph equations

x − x0 − µn(p̂k)tn = − 1

π

N+1∑
i=1

P

∫
γ̂i

ep̂k

ep(x,λ) − ep̂k
d (Im (0)) (32)

with

Im (0)|tn=0 =
∫ x∗(λ)

x0

Im (p(x ′, λ, 0)) dx ′.

Proof. Let ∂D = ∑N+1
k=1 γ̂k +

∑N+1
i=1 γi + γF + γc be our contour; by construction, 1 is analytic

inside �; we then consider the following integral:

1(x, λ′) = 1

2π i

∮
�

Q(λ, λ′)1(x, λ) dλ

where

Q(λ, λ′) = ep(x,λ)

ep(x,λ) − ep(x,λ′)

∂p(x, λ)

∂λ
.

Letting λ′ approach γ̂k , indenting the contour, and denoting
∑N+1

i=1 γi +γF +γc by�γ , we obtain

1(x, λ′) = 1

π i

∫
�γ

Q(λ, λ′)1(x, λ) dλ +
1

π i

N+1∑
k=1

P

∫
γ̂k

Q(λ, λ′)1(x, λ) dλ. (33)

Collecting the real parts on both sides, equation (33) becomes

Re (1(x, λ′)) = 1

π

N+1∑
k=1

P

∫
γ̂k

Re (Q(λ, λ′))Im (1(x, λ)) dλ

+
1

π

∫
�γ

Im (Q(λ, λ′))Re (1(x, λ)) dλ +
1

π

∫
�γ

Re (Q(λ, λ′))Im (1(x, λ)) dλ

+
1

π

N+1∑
k=1

P

∫
γ̂k

Im (Q(λ, λ′))Re (1(x, λ)) dλ.

Since p(x, λ) is real except on the curve γc, it follows that Q(λ, λ′) is real† on γF +
∑N+1

i=1 γi +∑N+1
k=1 γ̂k . Now on γF , p(x, λ) is always real for all x; 1(x, λ) will also be real, so the integral

vanishes here. On either γi or γj for i = 1, . . . , m, j = m + 1, . . . , N + 1, 1(x, λ) is like

1(x, λ)|γi = 0(x, λ)|γi − (x − x0)pi + Hn(x, pi)tn

1(x, λ)|γj = 0(x, λ)|γj − (x − x0)pj + Hn(x, pj )tn

since, in the vicinity of pi (pj ), p can be expressed as pi + O(exp{+λ})(pj + O(exp{−λ})),
so p behaves like pi(pj ) on γi(γj ). This implies that 1(x, λ) is real on either γi or γj . On

† For x > x∗ on γ̂k, k = 1, . . . , N + 1.
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the the arcs enclosing the cuts γ̂k , since p(x, λ) is real for x > x∗, Q(λ, λ′) is also real, but
1(x, λ) has a nonzero imaginary part in the intervals

[λ̂i(x0), λ̂i(x
∗)] ∪ [λ̂j (x

∗), λ̂j (x0)].

Therefore, we obtain

Re (1(x, λ′)) = 1

π

N+1∑
k=1

P

∫
γ̂k

Q(λ, λ′)Im (1(x, λ)) dλ

+
1

π

∫
γc

Im (Q(λ, λ′))Re (1(x, λ)) dλ +
1

π

∫
γc

Re (Q(λ, λ′))Im (1(x, λ)) dλ.

Differentiating with respect to λ′, we have

∂Re (1(x, λ′))
∂λ′ = 1

π

N+1∑
k=1

P

∫
γ̂k

∂Q(λ, λ′)
∂λ′ Im (1(x, λ)) dλ

+
1

π

∫
γc

∂Im (Q(λ, λ′))
∂λ′ Re (1(x, λ)) dλ

+
1

π

∫
γc

∂Re (Q(λ, λ′))
∂λ′ Im (1(x, λ)) dλ. (34)

Now since

Q(λ, λ′) dλ = ep(x,λ)

ep(x,λ) − ep(x,λ′) dp

and so

∂Q(λ, λ′)
∂λ′ dλ = ∂p(x, λ′)

∂λ′
ep(x,λ)+p(x,λ

′)

(ep(x,λ) − ep(x,λ′))2
dp

= ∂p(x, λ′)
∂λ′

∂

∂λ

(
− ep(x,λ

′)

ep(x,λ) − ep(x,λ′)

)
dp

equation (34) becomes

∂Re (1(x, λ′))
∂λ′ = 1

π

N+1∑
k=1

P

∫
γ̂k

Q′(λ, λ′)
∂Im (1(x, λ))

∂λ
dλ

+
1

π

∫
γc

Im (Q′(λ, λ′))
∂Re (1(x, λ))

∂λ
dλ

+
1

π

∫
γc

Re (Q′(λ, λ′))
∂Im (1(x, λ))

∂λ
dλ

where

Q′(λ, λ′) = ep(x,λ
′)

ep(x,λ) − ep(x,λ′)

∂p(x, λ′)
∂λ′ .

The integrals on γc must vanish as Q′(λ, λ′) and ∂1(x,λ)

∂λ
are both O( 1

λ
) as |λ| → ∞. Taking

the fact that Im (1) = Im (0), we obtain

∂0(x, λ′)
∂λ′ +

{
∂Hn(x, p(x, λ

′))
∂p

tn − (x − x0)

}
∂p(x, λ′)

∂λ′

= 1

π

N+1∑
k=1

P

∫
γ̂k

Q′(λ, λ′) d (Im (0)). (35)
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Write µn(p) = ∂Hn(x,p)

∂p
, and let λ′ → λ̂k,

∂λ′
∂p

→ 0. Now ∂0
∂p

is bounded at λ̂k , since, by

using equation (28), we see that 0 is like 0k + O((λ − λ̂k)
3
2 ) at the branch points. Moreover,

∂λ
∂p

= O((λ − λ̂k)
1
2 ) near λ̂k . It follows that ∂0

∂λ′ is bounded as λ → λ̂k , and hence ∂0
∂p′ must

vanish at the branch points λ̂k . We finally obtain, on dividing (35) by ∂p

∂λ
and evaluating at the

branch points, the stated result

x − x0 − µn(p̂k)tn = − 1

π

N+1∑
i=1

P

∫
γ̂i

ep̂k

ep(x,λ) − ep̂k
d (Im (0)) i = 1, . . . , N + 1. (36)

�
This is the solution of the initial value problem. The N -waterbag reduction of the d	KP

hierarchy is a system of hydrodynamic type with N + 1 dependent variables. With our
solution (36), we see that the left-hand side is in the form of Tsarev’s hodograph solution (7),
while the right-hand side contains an integral. The kernel Q′(λ, λ′) of this integral is the
generating function for the characteristic speeds of commuting flows µm(p̂k), which solve an
overdetermined system of partial differential equations equivalent to (8). This kernel is the
same for any reduction of the hierarchy. We note here that the solution of this reduction is
similar in structure to the solution of the dispersionless Toda equations given by Kodama [11],
especially the kernel Q′(λ, λ′). However, the contours γi depend explicitly on the reduction;
indeed, reductions can be parametrized by a choice of these contours. Finally, the measure
d(Im (0)) depends explicitly on the initial data.
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[13] Toda M 1975 Studies of a nonlinear lattice Phys. Rep. 18c 1
[14] Toda M 1989 Nonlinear Waves and Solitons (London: Kluwer)
[15] Toda M 1989 Theory of Nonlinear Lattices (Berlin: Springer)
[16] Tsarev S P 1985 On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type Sov.

Math.–Dokl. 31 488
[17] Whitham G B 1973 Linear and Nonlinear Waves (New York: Wiley)


